科学研究
学术报告
当前位置: 公司主页 > 科学研究 > 学术报告 > 正文

On asymptotic behavior of Steady Euler equations

发布时间:2023-04-06 作者: 浏览次数:
Speaker: 王天怡 副教授 DateTime: 2023年4月7日(周五上午)11:00-12:00
Brief Introduction to Speaker:

王天怡武汉理工大学副教授,公开发表SCI论文6篇,其中1篇为ESI高被引论文,部分研究结果发表在本领域国际顶尖学术期刊 :《Advances in Mathematics》、《Archive for Rational Mechanics and Analysis》,研究结果被 SCI 期刊引用28次,他引21次,专著引用2次。受邀在中国数学会2017年学术年会、本领域国际最高水平的学术会议 HYP (Hyperbolic Problems Theory, Numerics, Applications),以及英国牛津大学、英国巴斯大学、美国乔治亚理工学院、意大利萨索科学研究中心、香港中文大学和上海交通大学等单位作了相关学术报告。应邀担任多个国际学术期刊审稿人。参加过2项国家自然科学基金项目,主持国家自然科学基金项目1项。横向科研项目3项。

Place: 六号楼二楼报告厅 M201
Abstract:In this talk, we justify the low Mach number limit and far field convergence rates of the steady irrotational Euler flows for a series of problems. The uniform estimates on the compressibility parameter, which is singular for the flows, are established via a variational approach based on the compressible-incompressible difference functions. The limit is on the Holder space and is unique. For far field convergence rates, the maximum principle is applied to estimate the potential function, by choosing the proper compared functions. Then, the convergence rates of velocity at the far field are obtained by the weighted Schauder estimates. Furthermore, we construct the examples to the show the optimality of our convergence rates, and show the expansion of the incompressible airfoil flow at infinity, which indicates the higher convergence rates. This talk is based on the joint works with Mingjie Li, Lei Ma, Wei Xiang, Chunjin Xie, Jiaojiao Zhang.