Research
Nonlinear PDE
location: English > Research > Research Groups > Nonlinear PDE > 正文

Brief Introduction of ZI, Ruizhao

Time:2015-07-28  Author:  ClickTimes:
ZI, Ruizhao
Chinese Version  (中文版)          
Personal Data

Name:    Ruizhao Zi  

Address: School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P. R. China  

Email:       rzz@mail.ccnu.edu.cn


Education
   
09. 2010-06.2013, PhD in Mathematics, awarded by Zhejiang University, Hangzhou, P.R. China  
09.2007-06.2010, Master of Science, in Mathematics, awarded by Central China Normal University, Wuhan, P.R. China  
09.2003-06.2007, B.S. in geography, awarded by Central China Normal University, Wuhan, P.R. China  


Employment

Central China Normal University: Lecturer, 07.2013-01.2014  
Technology Univerisity of Darmstadt: Postdoctoral Fellow, 01.2014-07.2014  
Central China Normal University: Lecturer, 07.2014-present  

Research

Partial Differential Equations, Harmonic Analysis  

Publications and Preprints

Published
[1]             R.-Z. Zi, D.-Y. Fang and T. Zhang, Global solutions to the incompressible Oldroyd-B model in the critical     Lp framework: The case of non-small coupling parameter,   Arch. Rational Mech. Anal.,   213 (2014), 651-687.  
[2]        D.-Y. Fang and     R.-Z. Zi, Incompressibel limit of Oldroyd-B fluids in the whole space,   J. Differential Equations, 256 (2014), 2559-2602.  
[3]           D.-Y. Fang, M. Hieber and     R.-Z. Zi, Global existence results for Oldroyd-B   fluids in exterior domains: the case of non-small coupling parameters,    Mathematische Annalen, 357 (2013), no. 2, 687-709.  
[4]           S.-J. Ding, J.-R. Huang, H.-Y. Wen and     R.-Z. Zi, Incompressible limit of the compressible nematic liquid crystal flow,     Journal of Functional Analysis, 264 (2013), no. 7, 1711-1756.  
[5]           D.-Y. Fang and     R.-Z. Zi, On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations,     Discrete and Continuous Dynamical Systems (DCDS-A), 33 (2013), no. 8, 3517-3541.  
[6]           D.-Y. Fang and     R.-Z. Zi, Strong solutions of 3D compressible Oldroyd-B fluids   , Mathematical Methods in the Applied Sciences, 36 (2013), no.11, 1423-1439.  
[7]           L. Yao, C.-J. Zhu and     R.-Z. Zi, Incompressible limit of viscous liquid-gas two phase flow model,     SIAM Journal on Mathematical Analysis,     44 (2012), no. 5, 3324-3345.  
[8]           D.-Y. Fang,     R.-Z. Zi and T. Zhang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime,     Journal of Mathematical Physics,     53 (2012), 033706.  
[9]           D.-Y. Fang,     R.-Z. Zi and T. Zhang, A blow-up criterion for two dimensional compressible viscous heat-conductive flows,     Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), no. 6, 3130-3141.  
[10]           D.-Y. Fang,     R.-Z. Zi and T. Zhang, Decay estimates for isentropic compressible Navier-Stokes equations in bounded domain,     Journal of Mathematical Analysis and Applications,     386 (2012), no. 2, 939-947.  
[11]           C.-J. Zhu and     R.-Z. Zi, Asymptotic behavior of solutions to 1D compressible Navier-Stokes equations with gravity and vacuum,     Discrete and Continuous Dynamical Systems (DCDS-A), 30 (2011), no. 4, 1263-1283.  
[12]         H.-Z. Xie and     R.-Z. Zi, Remarks on the nonliner instability of incompressible Euler equations   , Acta Mathematica Sinica. English Series, 31 (2011), no. 5, 1877-1888.  
   
Submitted
[13]         R.-Z. Zi, Global solution to the incompressible Oldroyd-B model in hybrid Besov spaces,     submitted, 2014.  
[14]         R.-Z. Zi, Global solution in critical spaces to the compressible Oldroyd-B model with non-small coupling parameter,     submitted, 2014.