PERSONAL INFORMATION
Name: Xing-Gang He, Professor
Address: School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China
E-mail:
xingganghe@sina.com; xingganghe@aliyun.com
Phone: 15872369053
EDUCATION
Ph.D. Mathematics,The Chinese University of Hong Kong, 2001.3.
Dissertation: The geometry of self-affine sets and graph-directed systems.
Advisor: Professor Ka-Sing Lau.
M.A. Mathematics, Fudan University, 1989..
B.A. Mathematics, Wuhan University, 1983.
RESEARCH INTERESTS AND CURRENT RESEARCH WORKS
Fractal geometry , wavelets and harmonic analysis.
Publications:
29. Dai, Xin-Rong; He, Xing-Gang; Lau, Ka-Sing; On spectral
N-Bernoulli
measures.
Adv. Math.
259
(2014), 511–531.
28. An, Li-Xiang; He, Xing-Gang; A class of spectral Moran measures.
J. Funct.
Anal.
266
(2014),
no. 1, 343–354.
27. An, Li-Xiang; He, Xing-Gang; Li, Hai-Xiong; Quasisymmetrically thick
generalized-Cantor sets in R.
Arch. Math. (Basel)
101
(2013),
no. 6, 591–597.
26.
Dai, Xin-Rong;
He, Xing-Gang;
Lai, Chun-Kit Spectral property of Cantor
measures with consecutive digits.
Adv. Math.
242
(2013), 187–208.
25.
He, Xing-Gang;
Lai, Chun-Kit;
Lau, Ka-Sing Exponential spectra in L2(µ).
Appl.
Comput. Harmon. Anal.
34
(2013),
no. 3, 327–338.
24.
Cao, Li;
He, Xing-Gang Dimensional results for Cartesian products of
homogeneous Moran sets.
Acta Math. Appl. Sin. Engl. Ser.
28
(2012),
no. 4, 673
–680.
23.
He, Xing-Gang;
Li, Hai-Xiong Weyl-Heisenberg Riesz bases generated by two
intervals.
J. Fourier Anal. Appl.
18
(2012),
no. 5, 954–971.
22.
Deng, GuoTai;
He, XingGang Lipschitz equivalence of fractal sets in R.
Sci.
China Math.
55
(2012),
no. 10, 2095–2107.
21.
Cao, Li;
He, Xinggang Dimensional results for the Moran-Sierpinski
gasket.
Wuhan Univ. J. Nat. Sci.
17
(2012),
no. 2, 93–96.
20.
He, Xing-Gang;
Lau, Ka-Sing On the Weyl-Heisenberg frames generated by
simple functions.
J. Funct. Anal.
261
(2011),
no. 4, 1010–1027.
19.
He, Xing-Gang;
Kirat, Ibrahim;
Lau, Ka-Sing Height reducing property of
polynomials and self-affine tiles.
Geom. Dedicata
152
(2011), 153–164.
18.
Deng, Qi-Rong;
He, Xing-Gang;
Lau, Ka-Sing Self-affine measures and vector-
valued representations.
Studia Math.
188
(2008),
no. 3, 259–286.
17.
He, Xing-Gang;
Lau, Ka-Sing On a generalized dimension of self-affine
fractals.
Math. Nachr.
281
(2008),
no. 8, 1142–1158.
16.
Deng, Guo-Tai;
He, Xing-Gang Integral self-affine sets with positive Lebesgue
measures.
Arch. Math. (Basel)
90
(2008),
no. 2, 150–157.
15.
Deng, Guo-Tai;
He, Xing-Gang;
Wen, Zhi-Xiong Self-similar structure on
intersections of triadic Cantor sets.
J. Math. Anal. Appl.
337
(2008),
no. 1, 617–
631.
14.
He,Xing-Gang;
Liu,Chun-Tai Matrixrefinementequations:continuityand
smoothness.
Czechoslovak Math. J.
57(132)
(2007),
no. 2, 747–762.
13.
He, Xing-Gang Graph-directed sets and multitiles.
Southeast Asian Bull.
Math.
31
(2007),
no. 3, 523–536.
12.
He, Xing-Gang;
Wen, Zhi-Ying The self-similarity structure on infinite intervals.
J.
Math. Anal. Appl.
329
(2007),
no. 2, 1094–1101.
11.
He, Xing-Gang On the boundaries of self-similar tiles in R1.
Proc. Amer. Math.
Soc.
134
(2006),
no. 11, 3163–3170.
10.
He, Xing-Gang;
Wen, Zhi-Ying On the L1-solutions of refinement equations
with positive coefficients.
Nonlinearity
19
(2006),
no. 7, 1553–1563.
9.
He, Xing-Gang;
Lau, Ka-Sing Characterization of tile digit sets with prime
determinants.
Appl. Comput. Harmon. Anal.
16
(2004),
no. 3, 159–173.
8.
He, Xing-Gang;
Lau, Ka-Sing;
Rao, Hui Self-affine sets and graph-directed
systems.
Constr. Approx.
19
(2003),
no. 3, 373–397.
7.
He, Xing-Gang;
Lau, Ka-Sing;
Rao, Hui On the self-affine sets and the scaling
functions. Wavelet analysis (Hong Kong, 2001), 179–195,
Ser. Anal., 1, World
Sci. Publ., River Edge, NJ, 2002.
6.
He, Xinggang The generalization of Opial and Hua's inequality.
J. Central China
Normal Univ. Natur. Sci.
30
(1996),
no. 2, 133–134.
5.
He, Xing Gang Some inequalities for the traces of matrices. (Chinese)
J. Central
China Normal Univ. Natur. Sci.
29
(1995),
no. 1, 8–11.
4.
He, Xing Gang A short proof of a generalization on Opial's inequality.
J. Math.
Anal. Appl.
182
(1994),
no. 1, 299–300.
3.
He, Xing Gang Change of variables in integrals over domains in
space. (Chinese)
J. Central China Normal Univ. Natur. Sci.
27
(1993),
no. 2, 150
–151.
2.
He, Xing Gang Uniform domains and quasiconformal mappings.
(Chinese)
Chinese Ann. Math. Ser. A
13
(1992),
suppl., 66–69.
1.
He, Xing Gang Integrable quasiconformal homeomorphisms. (Chinese)
J.
Central China Normal Univ. Natur. Sci.
26
(1992),
no. 2, 138–143.