js6666金沙登录入口(中国)官方网站-iOS/安卓版/手机版APP下载
ENGLISH
|
官网首页
公司主页
关于我们
js6666金沙登录入口简介
现任领导
组织机构
联系方式
团队队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
公司产品
公司产品动态
研究生专业方向
公司产品方案
党建园地
党建动态
数公司党校
员工工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
员工动态
员工动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
公司主页
>
科学研究
>
学术报告
> 正文
Joint Analysis of Mixed Types of Outcomes with Latent Variables
发布时间:2023-07-10 作者: 浏览次数:
Speaker:
潘灯
DateTime:
2023年7月11日(周二)下午4:00-5:00
Brief Introduction to Speaker:
潘灯,华中科技大学数学与统计学院副教授,毕业于香港中文大学。研究方向为结构方程模型、贝叶斯统计以及生存分析等。
Place:
6号楼4楼会议室
Abstract:
We propose a joint modeling approach to investigating the observed and latent risk factors of mixed types of outcomes. The proposed model comprises three parts. The first part is an exploratory factor analysis model that summarizes latent factors through multiple observed variables. The second part is a proportional hazards model that examines the observed and latent risk factors of multivariate time-to-event outcomes. The third part is a linear regression model that investigates the determinants of a continuous outcome. We develop a Bayesian approach coupled with MCMC methods to determine the number of latent factors, the association between latent and observed variables, and the important risk factors of different types of outcomes. A modified stochastic search item selection algorithm, which introduces normal-mixture-inverse gamma priors to factor loadings and regression coefficients, is developed for simultaneous model selection and parameter estimation. The proposed method is s...
上一条:
Generalising Dynamic Semiparametric Averaging Forecasting for Time Series with Discrete-valued Response
下一条:
CCNU 代数学系列报告 (二十二):Quantization of parafermion vertex algebras