js6666金沙登录入口(中国)官方网站-iOS/安卓版/手机版APP下载
ENGLISH
|
官网首页
公司主页
关于我们
js6666金沙登录入口简介
现任领导
组织机构
联系方式
团队队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
公司产品
公司产品动态
研究生专业方向
公司产品方案
党建园地
党建动态
数公司党校
员工工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
员工动态
员工动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
公司主页
>
科学研究
>
学术报告
> 正文
Improving the generalization via coupled tensor norm regularization
发布时间:2023-05-24 作者: 浏览次数:
Speaker:
崔春风 教授
DateTime:
2023年5月31日(周三)14:00-15:00
Brief Introduction to Speaker:
崔春风,北京航空航天大学,教授
Place:
腾讯会议:612139884
Abstract:
In this paper, we propose a coupled tensor norm regularization that could enable the model output feature and the data input to lie in a low-dimensional manifold, which helps us to reduce overfitting. We show this regularization term is convex, differentiable, and gradient Lipschitz continuous for logistic regression, while nonconvex and nonsmooth for deep neural networks. We further analyze the convergence of the first-order method for solving this model. The numerical experiments demonstrate that our method is efficient.
上一条:
CCNU 代数学系列报告 (十八)The Galilean conformal algebra
下一条:
A local Sobolev inequality on Ricci flow and its applications