科学研究
学术报告
当前位置: 公司主页 > 科学研究 > 学术报告 > 正文

Sharp non-uniqueness for the 3D hyperdissipative Navier-Stokes equations: above the Lions exponent

发布时间:2022-11-09 作者: 浏览次数:
Speaker: 曲鹏 DateTime: 2022年11月16日(星期三)上午9:30—10:30
Brief Introduction to Speaker:

 曲鹏,复旦大学数学科学学院教授。主要从事应用偏微分方程的数学研究,在双曲守恒律、流体力学方程弱解等方面取得的成果曾发表在 Adv. Math., Arch. Rational Mech. Anal., J. Math. Pures Appl. 等国际知名期刊。曾获中国数学会钟家庆数学奖、中国工业与应用数学学会优秀青年学者奖。

Place: 腾讯会议:254-456-764
Abstract:In this talk, we would like to discuss the 3D hyperdissipative Navier-Stokes equations on the torus. It is well-known that, due to Lions, for any L^2 divergence-free initial data, there exist unique smooth Leray-Hopf solutions when the viscosity exponent is larger than 5/4. We prove that even in this high dissipative regime, the uniqueness would fail in the supercritical spaces in view of the generalized Ladyzenskaja-Prodi-Serrin condition. This talk is based on the joint work with Prof. Yachun Li, Prof. Deng Zhang and Dr. Zirong Zeng.