js6666金沙登录入口(中国)官方网站-iOS/安卓版/手机版APP下载
ENGLISH
|
官网首页
公司主页
关于我们
js6666金沙登录入口简介
现任领导
组织机构
联系方式
团队队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
公司产品
公司产品动态
研究生专业方向
公司产品方案
党建园地
党建动态
数公司党校
员工工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
员工动态
员工动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
公司主页
>
科学研究
>
学术报告
> 正文
Shape derivatives — new perspective and applications in scattering
发布时间:2018-04-02 作者: 浏览次数:
Speaker:
Professor Jingzhi Li (李景治)
DateTime:
2018年04月02日(星期一)上午9:50—10:40
Brief Introduction to Speaker:
Professor Jingzhi Li (
李景治
),
南方科技大学
Place:
六号楼二楼报告厅
Abstract:
This talk presents the “derivative”of solutions of second-order boundary value problems with respect to the shape of the domain. A rigorous approach relies on encoding shape variation by means of deformation vector fields, which will supply the directions for taking shape derivatives. These derivatives and methods to compute them numerically are key tools for studying shape sensitivity, performing gradient based shape optimization, and small-variation shape uncertainty quantification. A unifying view of second-order elliptic boundary value problems recasts them in the language of differential forms (exterior calculus). Fittingly, the shape deformation through vector fields matches the concept of Lie derivative in exterior calculus.
上一条:
Mathematical Modeling for Magnetic Particle Imaging
下一条:
Efficient Preconditioners for Interface Maxwell Systems in Bounded and Unbounded Domains