js6666金沙登录入口(中国)官方网站-iOS/安卓版/手机版APP下载
ENGLISH
|
官网首页
公司主页
关于我们
js6666金沙登录入口简介
现任领导
组织机构
联系方式
团队队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
公司产品
公司产品动态
研究生专业方向
公司产品方案
党建园地
党建动态
数公司党校
员工工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
员工动态
员工动态
人才招聘
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
学术报告
当前位置:
公司主页
>
科学研究
>
学术报告
> 正文
Continuous Time Hidden Markov Model for Longitudinal Data
发布时间:2018-03-16 作者: 浏览次数:
Speaker:
周洁
DateTime:
2018年3月17日(周六)下午3:30-4:30
Brief Introduction to Speaker:
周洁
,首都师范大学
。
Place:
六号楼二楼报告厅
Abstract:
Hidden Markov models (HMMs) describe the relationship between two stochastic processes, namely, an observed outcome process and an unobservable finite-state transition process. Given their ability to model dynamic heterogeneity, HMMs are extensively used to analyze heterogeneous longitudinal data. A majority of early developments in HMMs assume that observation times are discrete and regular. This assumption is often unrealistic in substantive research settings where subjects are intermittently seen and the observation times are continuous or not predetermined. However, available works in this direction are few and restricted only to certain special cases. In this article, we consider a general continuous-time HMM with an unknown number of hidden states. The proposed model is highly flexible, thereby enabling it to accommodate different types of longitudinal data that are regularly, irregularly, or continuously collected.
上一条:
Finite W super algebra via super Poisson geometry
下一条:
Interaction Estimation for Ultrahigh Dimensional Regression