js6666金沙登录入口(中国)官方网站-iOS/安卓版/手机版APP下载
ENGLISH
|
官网首页
公司主页
关于我们
js6666金沙登录入口简介
现任领导
组织机构
联系方式
团队队伍
教授
副教授
讲师
党委行政
科学研究
研究中心
数苑博雅讲座
学术报告
学术会议
科研项目
科研论文
本科教学
教学动态
精品课程
教学团队
本科生实习
专业介绍与培养方案
公司产品
公司产品动态
研究生专业方向
公司产品方案
党建园地
党建动态
数公司党校
员工工作
学工热点
研究生园地
班团快讯
体坛风云
社团采风
学工制度
合作交流
员工动态
员工动态
人才招聘
团队队伍
教授
副教授
讲师
党委行政
教授
当前位置:
公司主页
>
团队队伍
>
教授
> 正文
林明辉 (Lim Meng Fai)
English Version (英文版)
职称
教授
办公室
六号楼 M204
邮箱
limmf@ccnu.edu.cn
个人简介
js6666金沙登录入口教授,硕士生导师. 主要从事岩泽理论、整数环的高次代数K-群及相关领域的研究工作. 在 Advances in Mathematics, Forum Mathematicum, Israel Journal of Mathematics, Mathematical Proceedings of the Cambridge Philosophical Society, Documenta Mathematica, Proceedings of the American Mathematical Society, Journal of Number Theory, Ramanujan Journal 等国际学术期刊发表论文30余篇; 于2015年入选湖北省楚天学者计划之楚天学子; 先后主持国家自然科学基金外国青年学者研究基金项目、国家自然科学基金面上项目等.
开设课程
本科生课程:高等代数与解析几何1-3、抽象代数、拓扑学、解析几何 研究生课程:抽象代数、复分析
研究方向
代数数论: Iwasawa理论, 整数环的高次代数K群, L函数的特殊值的算术意义
教育经历
2005.9-2010.8 : 就读于加拿大麦克马斯特大学数学系,2010.8 获博士学位 (导师:Romyar T. Sharifi) 2003.8-2005.7 : 就读于新加坡国立大学数学系,2005.8 获硕士学位 (导师: A. Jon Berrick) 1999.7-2003.6 : 就读于新加坡国立大学数学系,2003.6 获第一荣誉学士学位
工作经历
2020.7- :js6666金沙登录入口,教授 2015.3-2020.6 : js6666金沙登录入口,副研究员 2010.9-2014.10 : 加拿大多伦多大学数学系,博士后 (导师:V. Kumar Murty)
研究成果
预印本 [ ] Meng Fai Lim, On the p-divisibility of even K-groups of the ring of integers of a cyclotomic field, arXiv:2308.04099 [math.NT] [ ] Meng Fai Lim, On fine Mordell-Weil groups over Zp-extensions of an imaginary quadratic field, arXiv:2308.04096 [math.NT] 待发表论文 [ ] Meng Fai Lim, Structure of fine Selmer groups over Zp-extensions, accepted for publication in Mathematical Proceedings of the Cambridge Philosophical Society. [ ] Meng Fai Lim, On p^j-rank of even K-groups of rings of integers, accepted for publication in Acta Mathematica Sinica (English Series). [ ] Meng Fai Lim, On the codescent of étale wild kernels in p-adic Lie extensions, accepted for publication in Kyoto Journal of Mathematics, arXiv:2101.06695[math.NT] [ ] Meng Fai Lim, Comparing direct limit and inverse limit of even K-groups in multiple Zp-extensions, accepted for publication in Journal de Théorie des Nombres de Bordeaux, arXiv:2209.10059[math.NT]. 发表论文 [37] Meng Fai Lim, On the structure of even K-groups of rings of algebraic integers, Acta Arithmetica 211, no. 4, 345-361 (2023). [36] Antonio Lei, Meng Fai Lim and Katharina Müller, Asymptotic formula for Tate-Shafarevich groups of p-supersingular elliptic curves over anticyclotomic extensions, Advances in Mathematics 434 (2023), Paper No. 109320. [35] Meng Fai Lim and Ramdorai Sujatha, On the structure of fine Selmer groups and Selmer groups of CM elliptic curves, in: Topics in Number Theory, 235-256, Ramanujan Mathematical Society Lecture Note Series, 26. [34] Meng Fai Lim, Norm principle for even K-groups of number fields, Bulletin of the Malaysian Mathematical Sciences Society 46, no. 1, Article number: 12 (2023). [33] Debanjana Kundu and Meng Fai Lim, Control theorems for fine Selmer groups, Journal de Théorie des Nombres de Bordeaux, Tome 34, no. 3, pp. 851-880 (2022). [32] Meng Fai Lim, On the growth of even K-groups of rings of integers in p-adic Lie extensions, Israel Journal of Mathematics 249, no. 2, 735-767 (2022). [31] Meng Fai Lim, On order of vanishing of characteristic elements, Forum Mathematicum 34, no. 4, 1051-1080 (2022). [30] Meng Fai Lim, On the cohomology of Kobayashi's plus/minus norm groups and applications, Mathematical Proceedings of the Cambridge Philosophical Society 171, no. 1, 1-24 (2022). [29] Antonio Lei and Meng Fai Lim, On fine Selmer groups and signed Selmer groups of elliptic modular forms, Bulletin of the Australian Mathematical Society 105, no. 3, 419-430 (2022). [28] Antonio Lei and Meng Fai Lim, Mordell-Weil ranks and Tate-Shafarevich groups of elliptic curves with mixed-reduction type over cyclotomic extensions, International Journal of Number Theory 18, No. 02, 303-330 (2022). [27] Meng Fai Lim, On the weak Leopoldt conjecture and coranks of Selmer groups of supersingular abelian varieties in p-adic Lie extensions, Tokyo Journal of Mathematics 44, no. 2, 477-494 (2021). [26] Antonio Lei and Meng Fai Lim, Akashi series and Euler characteristics of signed Selmer groups of elliptic curves with semistable reduction at primes above p, Journal de Théorie des Nombres de Bordeaux (Proceedings of Iwasawa 2019), Tome 33, no. 3.2, pp. 997-1019 (2021). [25] Suman Ahmed and Meng Fai Lim, On the algebraic functional equation for the mixed signed Selmer group over multiple Zp-extensions, Proceedings of the American Mathematical Society 149, no. 11, 4541-4553 (2021). [24] Meng Fai Lim, Some remarks on Kida's formula when μ≠0, The Ramanujan Journal 55, Issue 3, 1127-1144 (2021). [23] Suman Ahmed and Meng Fai Lim, On the algebraic functional equation of the eigenspaces of mixed signed Selmer groups of elliptic curves with good reduction at primes above p, Acta Mathematica Sinica (English Series) 37, no. 2, 289-305 (2021). [22] Suman Ahmed and Meng Fai Lim, On the signed Selmer groups of congruent elliptic curves with semistable reduction at all primes above p. Acta Arithmetica 197, no. 4, 353-377 (2021). [21] Meng Fai Lim, On the control theorem for fine Selmer groups and the growth of fine Tate-Shafarevich groups in Zp-extensions, Documenta Mathematica 25, 2445-2471 (2020). [20] Pin-Chi Hung and Meng Fai Lim, On the growth of Mordell-Weil ranks in p-adic Lie extensions, Asian Journal of Mathematics 24, No. 4, 549-570 (2020). [19] Suman Ahmed and Meng Fai Lim, On the Euler characteristics of signed Selmer groups, Bulletin of the Australian Mathematical Society 101, no. 2, 238–246 (2020). [18] Meng Fai Lim, A note on asymptotic class number upper bounds in p-adic Lie extensions, Acta Mathematica Sinica (English Series) 35, Issue 9, 1481-1490 (2019). [17] Dingli Liang and Meng Fai Lim, On the Iwasawa asymptotic class number formula for Z_p^r\rtimes Z_p-extensions, Acta Arithmetica 189, no. 2, 191-208 (2019). [16] Meng Fai Lim and Ramdorai Sujatha, Fine Selmer groups of congruent Galois representations. Journal of Number Theory 187, 66-91 (2018). [15] Meng Fai Lim, M_H(G)-property and congruence of Galois representations. Journal of the Ramanujan Mathematical Society 33, No. 1, 37-74 (2018). [14] Meng Fai Lim, Comparing the π-primary submodules of the dual Selmer groups. Asian Journal of Mathematics, Vol. 21, No. 6, 1153-1182 (2017). [13] Meng Fai Lim, On the complete faithfulness of the p-free quotient modules of dual Selmer groups. Journal of the Ramanujan Mathematical Society 32, No. 3, 299-326 (2017). [12] Meng Fai Lim, Notes on the fine Selmer groups. Asian Journal of Mathematics 21, No. 2, 337-362 (2017). [11] Meng Fai Lim, Akashi series, characteristic elements and congruence of Galois representations. International Journal of Number Theory 12, No. 3, 593-613 (2016). [10] Meng Fai Lim and V. Kumar Murty, The growth of fine Selmer groups. Journal of the Ramanujan Mathematical Society 31, No. 1, 79-94 (2016). [9] Meng Fai Lim, On the pseudo-nullity of the dual fine Selmer groups. International Journal of Number Theory 11, No. 7, 2055-2063 (2015). [8] Meng Fai Lim and V. Kumar Murty, Growth of Selmer groups of CM Abelian varieties. Canadian Journal of Mathematics 67, No. 3, 654-666 (2015). [7] Meng Fai Lim, On completely faithful Selmer groups of elliptic curves and Hida deformations. Journal of Algebra 432, 72-90 (2015). [6] Meng Fai Lim, On the homology of Iwasawa cohomology groups. Journal of the Ramanujan Mathematical Society 30, No. 1, 51-65 (2015). [5] Meng Fai Lim, A remark on the M_H(G)-conjecture and Akashi series. International Journal of Number Theory 11, No. 1, 269-297 (2015). [4] Meng Fai Lim and V. Kumar Murty, The growth of the Selmer group of an elliptic curve with split multiplicative reduction. International Journal of Number Theory 10, No. 3, 675-687 (2014). [3] Meng Fai Lim and Romyar Sharifi, Nekovar duality over p-adic Lie extensions of global fields. Documenta Mathematica 18, 621-678 (2013). [2] Meng Fai Lim, Poitou-Tate duality over extensions of global fields. Journal of Number Theory 132, 2636-2672 (2012). [1] A Jon Berrick and Meng Fai Lim, Intertwining matrices for number fields: supplement to "Intertwiners and K-theory of commutative rings". J. Reine Angew. Math. 601, 159-162 (2006).
研究项目
1. 国家自然科学基金项目:外国青年学者研究基金 (No.1151101011) 项目名称:Iwasawa Theory of Selmer groups and fine Selmer groups, 2016.01-2017.12. 2. 国家自然科学基金项目:面上项目(No.11771164) 项目名称:非交换Iwasawa理论中的若干问题,2018.01-2021.12.
附件
上一篇:
李波
下一篇:
刘敏思